
Tin); relative temperature head. Indices: i, tube space; 2, intertube space; w, wali[; i, 
ice; in, out, parameters corresponding to the input and output of the heat exchanger (model). 
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FLOW AND HEAT TRANSFER IN A NONSTEADY JET GENERATED 

BY LARGE-AMPLITUDE GAS OSCILLATIONS 

R. G. Galiullin and E. I. Permyakov UDC 532.525.2:534.242:536.24 

The problem of the velocity field in a jet formed by nonlinear oscillations in 
a tube is solved. Equations are derived that describe heat transfer to a body 
placed at the jet axis. These relationships are tested experimentally. 

Jet flows of an incompressible fluid and a gas comprise one of the best developed fields 
of boundary-layer science. The importance of this branch of knowledge is due to the wzde 
prevalence of jet flows in nature and engineering. An entire class of jet flows exists, how- 
ever, that has hardly been investigated up to now, namely, nonsteady jets. Such jets c~an 
be produced using a generator of large-amplitude oscillations, which consists of a resonance 
tube, one end of which is open and communicates with the ambient medium, and at the other 
end of which a flat piston moves harmonically [i]. Upon the excitation of oscillations in 
the tube, a nonsteady jet is formed at its open end, with the amplitude of velocity oscfflla- 
tions in the jet reaching 160 m/sec near resonance. Another way of generating a high-velocity 
nonsteady jet has been described in [2]. 

The high amplitude of the velocity pulsations makes it possible to use the generated 
jet to investigate heat transfer between bodies and oscillating flows in a wide range cf varia- 
tion of the oscillatory Reynolds number Reos c and the Strouhal number Sh. Heat transfs be- 
tween bodies and this jet is also interesting because the velocity oscillations in it are 
anharmonic: the spectrum of velocity oscillations contains a constant component and a number 
of harmonics [3, 4]. 

In this paper we attempt to investigate the velocity field in a nonsteady jet generated 
at the open end of a pipe during nonlinear gas oscillations in it, as well as heat transfer 
for bodies (a cylinder, sphere, and disk) placed at the jet axis. 

To solve the hydrodynamic part of the problem, we used the law of conservation of nomen- 
tum [5], which in the case of a nonsteady jet takes the form 

Ot . ~ ru~dr = O. ( 1 ) 

0 0 

We assume that the axial velocity u can be represented as a sum u = ua + ul + u2, where u 0 
is the time-averaged component and u I and u 2 are the first and second harmonics, with u~ = u0 
and u 2 << u I. After substituting u into (i) and averaging over time, we obtain 

V. I. Ul'yanov-Lenin Kazan' State University. 
Zhurna!, Vol. 58, No. 5, pp. 747-752, May, 1990. 
1989. 

Translated from Inzhenerno-Fiziches1~ii 
Original article submitted February 16, 

0022-0841/90/5805-0571512.50 �9 1990 Plenum Publishing Corporation 571 



J o = 2 a P  [ ( % + < u ~ ) + < u  2 > ) r d r = c o n s t .  

We subtract (2a) from (i) and use the fact that u 2 << u~. 

O i ru~dr + O i Ot ~x  . 2u~ 
0 0 

We then have 

O, 

( 2 a )  

(2b) 

at . . 
0 0 

We seek solutions to Eqs. (2) in the form 

rdr = 0. ( 2 c )  

1 1 
Uo : - -  F (5, 11), ul - -  F ([3, vl) [fl (x) sin ~ot + f3 (x) cos o~tl, 

x x (3) 

1 
u2 = - -  F (% q) lg (x) sin 2cot -t- gz (x) cos 2~otl, 

X 

where N = r/V~xex, e is the coefficient of turbulent viscosity, and F(~, n) is the velocity 
profile. We take 

~Z h -Z 

F ( ~ ,  ~]) = 2o~ z 1 -b  ___~_q2) , ( 4 )  

i.e., the profile of a steady, self-similar jet [6]. We take the boundary condition for (3) 
in the form u(x = x0, r = O) = Um(a + b cos cot + c cos cot), and then 2~ 2 = aUmX 0, 2~ 2 = bumx 0, 
and 272 = CUmX 0. Here x0 is the distance from the open end of the tube at which formation 
(detaching) of the jet occurs. 

The substitution of (3) into (2) results in the system of equations 

~olf!-t- df~ _--_0, --colf2 @ dr1 =0,  ~ + dg2 d @ au + ay = o, 

dgl d 
-  o.g.o + + 2x dy ( L & )  = 0, (5) 

where col = kiSh0 and co2 = k2Sh0; Sh0 = mx0/Um; ki,2 and X are numbers calculated from the 
equations 

kl (b--a)2 ( a + b  2ab la  b ) -1 1 = - -  , k ~ = 2 k  i (a ,  c), X =  bkz; (6) 
" 4ab b --  a a 6 

y = ( x / x 0 )  2 i s  t h e  d i m e n s i o n l e s s  c o o r d i n a t e .  Th e  b o u n d a r y  c o n d i t i o n s  f o r  f t , 2  a n d  g l , 2  f o l l o w  
f r o m  t h e  c o n d i t i o n s  f o r  u :  f l ( Y  = 1)  = g l ( Y  = 1)  = 0 ,  f 2 ( Y  = 1)  = g a ( Y  = 1)  = 1.  

The solution of system (5) has the form 

[1 = sin [~1 (y - -  1)1, f2 = cos [% (y - -  1)1, g~ ---- (1 - -  A) sin [ ~  (y - -  1)l + 

+ A sin [2co a (9 - -  1)1, gz = (1 - -  A) cos [(o2 (y - -  1)1 -l- 

-t- A cos [2% (y - -  1)l, A = 2~x~ 
c% - -  2(o 1 

F r o m  ( 6 )  i t  f o l l o w s  t h a t  ~ l / w  2 : c /b ,  s o  t h a t  ( 2 a )  i s  v a l i d  t o  s e c o n d  o r d e r .  S u b s t i t u t i n g  
( 3 )  i n t o  ( 2 a ) ,  f o r  t h e  m e a n  momentum we o b t a i n  J0  = ( 8 ~ / 3 ) 0 e u m x 0 ( a  + b / 2  + c / 2 ) .  The  c o e f f i -  
c i e n t  o f  t u r b u l e n t  v i s c o s i t y ,  a s  i n  t h e  c a s e  o f  a s t e a d y  j e t ,  i s  e x p r e s s e d  by  t h e  e q u a t i o n  

[ 6 ]  e : o JC~0/p,  w h e r e  o i s  an  e m p i r i c a l  c o n s t a n t .  

We write the resulting expression for the velocity: 

l 
u = - -  {F (c~, vl) -+- F (p, ~1) cos [~ot -- % (9 -- 1)1 Jr  F (% ~,) (1 -- A) >< 

X 

• cos [2~ot - -  ~;= (Lj - -  1)l + F (% ~1) A cos [2et  - -  2o~ (9 - -  1)1}. ( 7 )  
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TABLE i. Results of a Fourier Analysis of Velocity 
Oscillograms, f = 20 Hz 

Experiment Theory 

7 U 7 ~ T -7 

6 
8,4 

10,8 
14,4 

0,38 
0,36 
0,36 
0,38 

0,5 
0,46 
0.46 
0:42 

0,18 
0,18 
0,14 
0,!4 

0,39 
0,4 
0,41 
0,43 

0,52 
0,52 
0,54 
0,57 

0,09 
0,08 
0,06 
0,06 

qe t-~ a 7~ d ~ g 

u,~ F - \ /  ~ - 3  

Fig. i. Profiles of harmonic velocity components: 
universal profiles u0 (a), u~ (b), and u= (c); pro- 
files of u0 at x = 10.8 (d), 16.05 (e), and 20.05 
(e) and of u~ (g, h, i) (same x as for u0) ; f = 16 
Hz (I), 18 (2), 20 (3), and 22 Hz (4); 5) universal 
profile of a self-similar jet [6]; o = 0.01 (6) and 
0 . 0 1 2  (7). 

For further calculations, we specify the constants a, b, and c in (7). From the results of 
[7] it follows that velocity oscillations in the jet may be described approximately by the 
function 

u = u~ (m + cos ~t) @ (m 4- cos ~t), ( 8 )  

where @(z) = 1 at z > 0 and @(z) = 0 at z < 0; m is a constant that depends on the conditions 
of outflow at the open end of the tube. Near the fundamental resonance, m takes values from 
0.4 to 0.5. Expanding (8) in a Fourier series, we obtain 

1 
a = [m (~ + 2arc sin m) -]- 2 V 1 - -  nF 1, 

2~ 

b =  1 , ( ~  ) 2 a ~ 2 + a r c s i n m + m k r ~  ' c . -  3n (1--mZ)3/2" ( 9 )  

Let us consider heat transfer for bodies in the jet. At velocities of about 150 m/sec, 
an oscillation frequency ~20 Hz, and bodies of size ~10 -2 m, the Strouhal number is Sh ~ i, 
the oscillatory Reynolds number is Reosc >> i, and for Pr z 1 the heat transfer for a body 
should be quasi-steady [8] and occur in a boudnary layer that is formed. Consequently, the 
Nusselt number must satisfy Nu = <NUs(U(t)d/v)> , i.e., the steady-state function Nu(Re) must 
be averaged over the velocity oscillation period. 
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Fig. 2. Dependecne of u0 (a), lull (b), andiu2 [ (c) on x: 
f = 20 Hz (i), 22 (2), and 18 Hz (3). 

Fig. 3. Frequency dependence of Nu (light points) and U (dark 
points): i) x = 3.5; 2) 6; 3) 8.5; 4) ii; 5) 0.02-m diameter 
sphere; 6) 0.01-m diameter cylinder. 

log[ 1 + (d/2 s ) ]Nu #~. 

.log Nu q9 i .. 

g 
log[i+ 2~/d)lNu ~.~. 

, I e l - - # " , ,  , , , , 

~3 ~7 ~/ log Reos, c 

Fig. 4. Function Nu(Reos c): a) 
cylinder; b) sphere; c) disk; no- 
tation same as in Fig. 3. 

We use optimum data on heat transfer for a sphere and a cylinder in an established air 
stream. The following equation is given in [9] for a cylinder: 

Nu = 0,197 Re ~ 6 ( 1 0 a )  

F o r  a s p h e r e  we u s e  t h e  MeAdams e q u a t i o n  [ 8 ] :  

Nu = 0,33 Re ~ . ( 1 0 b )  

S u b s t i t u t i n g  ( 7 )  a t  r = 0 w i t h  t h e  a m p i t u d e s  ( 9 )  i n t o  ( 1 0 )  a nd  a v e r a g i n g  o v e r  t h e  o s c i l l a t i o n  

period, for m = 0.5 we obtain 
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Nu = 0,1Re~,~(x) ( l l a )  

for a cylinder and 

Nu = 0,17 Re~. 6 (x) (llb) 

f o r  a s p h e r e .  Here t h e  o s c i l l a t o r y  Reyno lds  number i s  c a l c u l a t e d  f o r  t h e  r a n g e  U(x) ~f v e l o c -  
i t y  o s c i l l a t i o n s  on t h e  j e t  a x i s .  

The e x p e r i m e n t a l  i n v e s t i g a t i o n  o f  a j e t  and o f  h e a t  t r a n s f e r  f o r  b o d i e s  in  t h e  j e t  was 
c a r r i e d  ou t  on a p p a r a t u s  t h a t  has  been d e s c r i b e d  in  d e t a i l  in  [ 1 0 ] .  The l e n g t h  o f  t h e  r e s o n -  
a t o r  t u b e  was 4 m and t h e  r e s o n a n c e  f r e q u e n c y  was f0 = 20 Hz. The v e l o c i t y  was measured  w i t h  
a c o n s t a n t - t e m p e r a t u r e  the rmoanemometer  w i t h  s u b s e q u e n t  compute r  l i n e a r i z a t i o n  o f  t h e  s i g n a l .  
The h e a t - t r a n s f e r  c o e f f i c i e n t  f o r  b o d i e s  (a  s p h e r e ,  a c y l i n d e r ,  and a d i s k )  p l a c e d  a t  t he  
j e t  a x i s  was d e t e r m i n e d  by t h e  r e g u l a r - r e g i m e  method [11]  u s i n g  a n a u t o m a t e d  measurement  s y s -  
tem. The models of the bodies were made of brass. The temperature was measured with a thermo- 
couple mounted in the body, the signal from which was printed out after amplification. The 
cylinder axis was set perpendicular to the stream. The disk plane was also oriented per- 
pendicular to the stream. The error in measuring the velocity did not exceed 20% and that 
for the heat-transfer coefficient did not exceed 10%. 

In Table 1 we give experimental and theoretical values of the spectral components of 
the velocity signal for four values of x. The agreement of the data for the constant compo- 
nent and the first harmonic up to x ~ 14 must be considered satisfactory. The agreement is 
worse for the second harmonic, but since the amplitude of the second harmonic is only 20% 
of the maximum velocity amplitude, the error in determining it may be large. We note that 
c increases with decreasing m, as follows from (9): c = 0.12 for m = 0.4 at x = x0, whereas 

and b vary insignificantly. 

Universal profiles of the velocity components are shown in Fig. la, b, c. The fu~Iction 
for a steady self-similar jet from [6] is also shown for comparison. It is seen that the 
profiles of a nonsteady jet possess the universality property and practically coincide with 
the function from [6]. 

The velocity components as functions of r/R are shown in Fig. id-i. Taking o = 0 01- 
0.012, we obtain good agreement between experiment and theory for the constant component and 
the first harmonic. For the second harmonic (not given in Fig. i) we can only talk about 
qualitative agreement between the theoretical and experimental profiles. 

The amplitudes of the velocity compnoents as functions of x are given in Fig. 2. The 
function i/x is also given there. As follows from a comparison of the theoretical and experi- 
mental data, the constant velocity compnent falls off slower than i/x. This fact may be re- 
lated to the influence on the flow of the finite initial gas flow rate through the jet cross 
section at x = x 0 [6]. In fact, our theoretical calculation is valid only for a jet with 
a zero initial flow rate, i.e., pulsating from a point source, as is easy to verify. The 
dependence of the amplitudes of the first and second harmonics on x agrees well with t~eory, 
however. From Fig. 2 one can conclude that the length of the section of formation of the 
jet is x 0 z 6R. 

In Fig. 3 we show the results of measuring heat transfer for a sphere and a cylinder 
as a function of the frequency of oscillations excited in an oscillation generator. The re- 
sults of measurements of the velocity range are also given here. It is seen that all the 
curves have a similar resonance nature, i.e., the Nusselt number is determined mainly b F the 
amplitude of the velocity oscillations. 

In Fig. 4 data on heat transfer are given as a function of the Reynolds number Reos c = 
U(x)d/v. All the experimental points are grouped around the functions 

Nu = 0,!15 1 + - ~ -  Rep'S(x) (12a)  
k 

for a cylinder, 

for a sphere, and 

Nu = 0,13,5 ReO, 6 (x) (12b)  

Nu = 1 Jr Re o, 4 s (x) ( 12 c ) 
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for a disk. The spread of the points around the functions (12) is 13% for a cylinder, 19% 
for a sphere, and 20% for a disk. The function (12a) yields values of Nu that are 13% higher 
than those form (lla). For a sphere, on the contrary, the function (12b) yields 20% lower 
Nu than does (llb). The experimental data obtained for a sphere and a cylinder can be con- 
sidered to be in good agreement with the predictions from (ii). 

NOTATION 

u, Velocity; lu11, Iv21, amplitudes of velocity components; P0, gas density, r, x, radial 
and axial coordinates of the cylindrical coordinate system; t, time; m, cyclic oscillation 
frequency; Sh = md/lul; Reos c = Ud/v; d, characteristic size of the body (diameter of the 
sphere, cylinder, and disk); Pr, Prandtl number; f = ~/2~; R, tube radius; R0, half-width 
of the jet; x = x/R; Uoo, lu101, In201, amplitudes_at x = Xo; ~, cylinder length (disk thick- 
ness); Co, speed of sound; a, constant component; b, c, first and second harmonics; Uom , 
lUlml, lU2ml, amplitudes of velocity components at the jet axis; ul = ul/Ulm, ul = lull/ 
lUlml, u 2 = lu21/(U2ml; U(x), range of velocity oscillations at the jet axis. 
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HYDRODYNAMIC CHARACTERISTICS OF ASCENDING GAS-LIQUID FLOW 

E. M. Shestopalov and V. V. Dil'man UDC 532.529.001.5 

A new equation for a cell model of bubble flow is obtained on the basis of a pre- 
viously unused boundary condition. A comprehensive investigation of the hydro- 
dynamic characteristics of this flow has been carried out on a specially built 
apparatus, enabling us to test experimentally both the newly derived equation 
and that published earlier by Marrucci. A comparison of the calculated and ex- 
perimental data showed that the Marrucci equation describes the bubble flow more 
accurately. 

The extensive use of gas-liquid flows in power, chemical, and biological engineering 
supports the constant interest in research into the various characteristics of the individual 
phases and of the flow as a whole. The monographs [1-3] have generalized the results of such 
research. Nevertheless, the accuracy in calculating (in a theoretical approach) such char- 
acteristics as the gas content and the absolute and relative velocities of bubble ascent in 
mass bubbling still remains inadequate. 
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